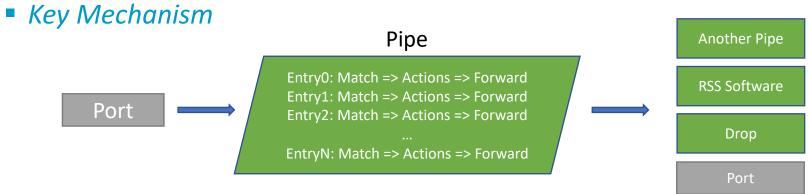

## BlueField w/ DOCA Flow

Guanshujie Fu & Prof. Jialin Li

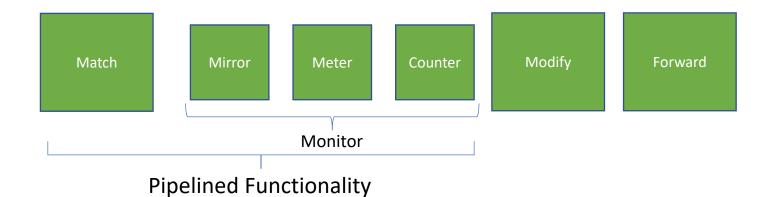
## DOCA Flow<sup>1</sup>

### DOCA HW offload flow library

- Pre-req
  - DPDK<sup>2</sup>
- Offer HW-acc for packet processing
  - Forward/Drop/Modify packets
  - Match/Monitor
  - Strip/Add tunnel (en/decap)
- Architecture
  - Flow -> Pipe(s) -> Entry(s)



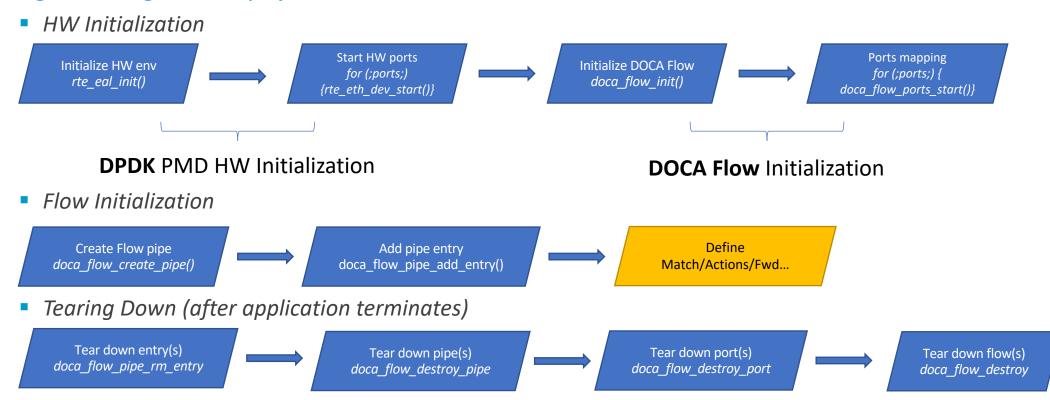

<sup>1.</sup> https://docs.nvidia.com/doca/sdk/doca-libraries-api/modules.html#group Flow


<sup>2.</sup> https://doc.dpdk.org/guides/prog\_guide/intro.html

## DOCA Flow Cont'd

DOCA HW offload flow library




■ Pipe entry Structure<sup>1</sup>



## DOCA Flow Cont'd

DOCA HW offload flow library

Programming Philosophy<sup>1</sup>



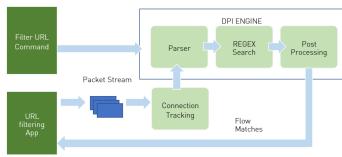
### DOCA Flow Cont'd

DOCA HW offload flow library

- Match
  - struct doca flow match¹
    - Match on MAC/IP/L4/Metadata/...
    - Both in/out packets
  - the user-defined fields that should be matched on the pipe
- Actions
  - struct doca flow actions<sup>2</sup>
    - Modify MAC/IP/L4
    - Encap/decap data
  - struct doca flow action desc³
    - Define the action type
- Forward
  - Next Pipe/Port/RSS Software/Drop

#### Public Variables

```
uint32_t flags
struct doca flow ip addr in dst ip
                uint8_t in_dst_mac[DOCA_ETHER_ADDR_LEN]
             doca_be16_t in_dst_port
             doca_be16_t in_eth_type
                uint8_t in_l4_type
struct doca flow ip addr in src ip
                uint8_t in_src_mac[DOCA_ETHER_ADDR_LEN]
             doca_be16_t in_src_port
                uint8_t in_tcp_flags
             doca be16 t in vlan tci
  struct <u>doca_flow_meta_meta</u>
struct doca_flow_ip_addr out_dst_ip
                uint8_t out_dst_mac[DOCA_ETHER_ADDR_LEN]
             doca_be16_t out_dst_port
             doca_be16_t_out_eth_type
                uint8_t out_l4_type
struct doca flow ip addr out src ip
                uint8_t out_src_mac[DOCA_ETHER_ADDR_LEN]
             doca_be16_t out_src_port
                uint8_t out_tcp_flags
             doca_be16_t out_vlan_tci
    struct doca flow tun tun
```


```
DOCA FLOW ACTION AUTO - modification type derived from pipe action
DOCA FLOW ACTION CONSTANT - modify action field with the constant value from pipe
DOCA FLOW ACTION SET - modify action field with the value of pipe entry
DOCA FLOW ACTION ADD - add field value. Supports meta scratch, ipv4_ttl, ipv6_hop, tcp_seq, and tcp_ack.
DOCA FLOW ACTION COPY - copy field
```

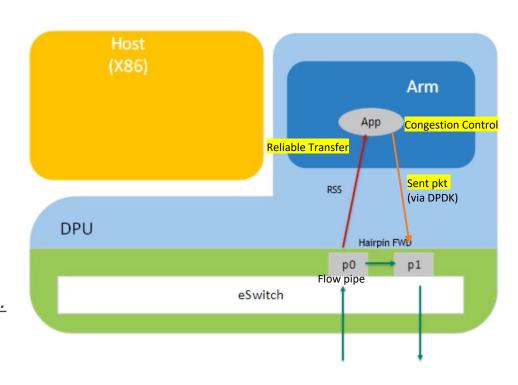
- 1. https://docs.nvidia.com/doca/sdk/doca-libraries-api/annotated.html#structdoca flow match
- https://docs.nvidia.com/doca/sdk/flow-programming-guide/index.html#doca-flow-actions
- 3. https://docs.nvidia.com/doca/sdk/flow-programming-quide/index.html#doca-flow-action-desc

## Applications w/ DOCA Flow

### Samples Provided by NVIDIA

- Simple Forward<sup>1</sup>
  - a forwarding application that takes either VXLAN, GRE, or GTP traffic from a single RX port and transmits it on a single TX port
- Switch<sup>2</sup>
  - a network application that leverages the DPU's hardware capability for internal switching between representor ports on the DPU
- URL Filter<sup>3</sup>
  - limits access by comparing web traffic against a database to prevent users from different threats, malware and accessing harmful sites such as phishing pages




- 1. https://docs.nvidia.com/doca/sdk/simple-forward-vnf/index.html
- 2. https://docs.nvidia.com/doca/sdk/switch/index.html
- 3. https://docs.nvidia.com/doca/sdk/url-filter/index.html

# Sketchy TCP w/ DOCA Flow

- Integrate **DOCA Flow** into the TCP stack
  - offload partial functionality of TCP network stack, like congestion control, into Bluefield
  - utilize Arm core and HW-acceleration on DPU
- Motivation
  - potential supports for packet process application
  - like network stack
  - Tonic system<sup>1</sup>
- High-level Idea

in **vnf** mode, packets can be sent to Software on Arm via RSS

- use DOCA Flow to provide <u>hw-acc for packet process</u>
  - DOCA\_FLOW\_ACTION\_ADD
  - Support tcp\_seq/tcp\_ack modification
- use Arm core software for reliable transfer/congetst ctrl....
  - Packets will be stored in DPDK queue
  - Software read packets from the queue, and proceed



## **Problems**

Issues encountered or worth considering

- DOCA Flow is highly dependent on DPDK
  - need solid knowledge of **DPDK**
  - maybe directly using DPDK to develop the network stack will be a better approach
- Limited supports provided by DOCA Flow
  - DOCA Flow only provides limited supports on packet process
- Current scheme is not so compatible with the use of DOCA Flow
  - do not fully utilize the hw-acc features
  - develop can be tough: no previous experience can be referenced to
- Any further questions?
  - I will try my best to answer

# Thank you

Guanshujie Fu & Prof. Jialin Li